

2011

An Emerging Visible Light Communication System for Driver Assistance

Navin Kumar

Institute of Telecommunication

University of Aveiro

1

© Fraunhofer Portugal 2010

kumar@ua.pt

An Emerging Visible Light Communication (VLC) System for Driver Assistance

Introduction
LEDs lighting and VLC
VLC in ITS
Technical and Implementation Issues
Prototype VLC Information Broadcast System

Experiments and Results

Conclusions and Future Research

VIsible Light Communication for Advanced Driver Assistance Systems (VIDAS)

Introduction and Background

- □ VLC is an emerging and novel Optical Wireless communication system which uses visible spectrum (approx. 390nm-750nm) emitted from light emitting diodes (LEDs).
- VLC is becoming an alternative choice for next-generation wireless access technology by offering:
 - Cheap and unregulated bandwidth, and
 - □ Ubiquitous infrastructures support.
- A wide range of applications, both indoor as well as outdoor:
 - □ simple large size file transfers
 - □ road safety traffic information transmission in Intelligent Transportation Systems (ITS) to assist drivers while driving on road (Fig.1).
- □ VLC Systems offer many distinctive features:
 - Lighting/signaling and Communication simultaneously
 - □ And novel applications: minimize road accidents and casualities.

ITS Application Scenario

LED and VLC

- LEDs, projected as next generation of lighting systems; enjoy
 - \Box High efficiency (70-80% of energy saving), \triangle Better Visibility
 - □ Low maintenance cost ▲ Long life (>100,000 hrs) ▲ Illumination in desired direction
- □ VLC technology uses inherent switching characteristics of LEDs without affecting its primary use of lighting/signaling.
- □ Wide spread of existing infrastructures, such as
 - Traffic lights, automobile's head and brake lights: VLC transmitter, while
 - Low cost photo detector (already in place on automobile) : as VLC receiver.
- □ In future, street/road lights based on LED can offer:
 - Ubiquitous and seamless communication connectivity (ubiquitous road-to-vehicle) communication (URVC)) (Fig.2) throughout travel.
- Therefore, a low cost VLC system can be implemented in ITS which is directly involved in human and material safety.

VLC in ITS

VLC in ITS

Issues and Actions

- □ Moreover, ITS is engineering science, involves many technologies.
- □ VLC can be an integral part of ITS (Fig.3)
 - Mostly because of existing infrastructures
 - □ VLC in ITS leads a Green growth (uses eco-friendly IT green technology)
 - Reduction in Radio system leads to reduced energy in turns reduced carbon emissions
 - Releases burden on Costly and Highly Congested Radio Frequency
- However, there are some technical issues and challenges in implementing VLC in ITS.
- 1) In ITS applications, VLC requires line-of-sight (LoS) link, limiting communication range.
- To increase the range, we can:
 - Optimize illumination,
 - □ Optimize placement of luminaries, such as traffic lights (Fig.4),
 - Use relaying techniques (vehicle-to-vehicle, using brake lights)

Issues and Actions

Optimized Placement of Luminaries (Traffic Lights)

VLC in ITS

Issues and Actions

- 2) VLC system in ITS is largely affected by natural and artificial lights (noise and interference) such as Sun light, ambient lights, road/street lights etc.
- □ Effect of such noise and interference can be minimized using:
 - Optical filter
 - Infrared filter
 - Robust modulation techniques
- We have developed and implemented Direct Sequence Spread Spectrum (DSSS) Sequence Inverse Keying (SIK) modulation technique which is found to be very effective against such interference.
- □ However, use of DSSS limits the data trasmission rate. But in traffic broadcast system high data rate is not an important issue.

9

Prototype VLC Information Broadcast System

Prototype Hardware Assembly and Working in Laboratory Setting

A low cost prototype VLC traffic broadcast system is hardware designed and implemented using optoelectronics and field programmable gate arrays (FPGA) (Fig.5).

OPTOELECTRONICS & FPGA

Experiments and Results

Experiment Scenarios

11

Experimental Results

An EXAMPLE: VLC FOR TRAFFIC INFORMATION BROADCAST

Click on non-text part of Blue area for video clip

VISIBLE LIGHT COMMUNICATIO NIS AMAZING

13

Conclusion and Future Works

- Omni Present, Unlicensed and Unregulated Visible Spectrum based technology can very well supplement congested radio frequency based systems for novel applications in ITS.
- Supported by existing infrastructures, a low cost VLC can find wide range of applications, both outdoor and indoor offering ubiquitous and seamless connectivity.
- Our experimental results from prototype VLC guarantees data communication from infrastructure-to-vehicle, broadcasting many safety related information, hence suitable for road safety applications.
- The technology is in early stage and more research is needed to explore bi-directional link, high data rate transmission etc.

Thank You !!!

Questions ?

15

